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Abstract

In this paper we present a general iterative method for the solution of the Riemann
problem for hyperbolic systems of PDEs. The method is based on the multiple
shooting method for free boundary value problems. We demonstrate the method by
solving one-dimensional Riemann problems for hyperelastic solid mechanics. Even
for conditions representative of routine laboratory conditions and military ballistics,
dramatic differences are seen between the exact and approximate Riemann solution.
The greatest discrepancy arises from misallocation of energy between compressional
and thermal modes by the approximate solver, resulting in nonphysical entropy and
temperature estimates. Several pathological conditions arise in common practice,
and modifications to the method to handle these are discussed. These include points
where genuine nonlinearity is lost, degeneracies, and eigenvector deficiencies that
occur upon melting.
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1 Introduction

We are interested in solving shock capturing problems in solid mechanics [9],
and coupling solid mechanics with fluid dynamics and vacuum boundary con-
ditions [10], in the context of Eulerian Godunov methods. These projects use
an approximate Riemann solver which is based on decomposing the jump
across a discontinuity in a set of right eigenvectors of an effective matrix lin-
earizing the system of partial differential equations. This approximation treats
shocks and rarefactions equally, and is known to be entropy violating in some
circumstances. In order to better diagnose the behavior of this approximate
Riemann solver for solid mechanics, and ultimately to develop more accurate
approximate schemes, it is desirable to have reference to an “exact” Riemann
solver for this system. In addition to its use in validating approximate solvers,
exact Riemann solvers may be used in adaptive strategies in which the expen-
sive solver is used judiciously.

Wang et al. [18] report having constructed an exact elastic-plastic Riemann
solver for use in front tracking applications but no description of this solver
is available. A number of workers have analyzed the properties of Riemann
problem solutions in elasticity. Tang and Ting [13] calculate wave curves for
an elastically isotropic material under uniaxial deformation. Garaizar [1] out-
lines an algorithm for solving the elastic Riemann problem under assump-
tions of elastic isotropy and uniaxial deformation. Trangenstein and Pember
[15] present analytical solutions to Riemann problems including elasticity and
perfect plasticity.

Godunov [2] proposed an exact iterative Riemann solver for gas dynamics as
part of the development of the method that bears his name. Subsequent work
in gas dynamics has recognized that an exact Riemann solver is not neces-
sary to achieve high order accuracy in a Godunov method, therefore simpler
approximate Riemann solver strategies are generally employed. Toro [14] de-
scribes a range of exact and approximate Riemann solvers for gas dynamics.

In section 2 we present a general algorithm for hyperbolic systems of n con-
servation laws containing m genuinely nonlinear waves left of the contact, and
m right of the contact. We assume initially strict genuine nonlinearity and no
degeneracy apart from the n — 2m waves forming the contact discontinuity.
Assuming also that the underlying equation of state is convex, and that the
jump between left and right states is small enough, Lax’s implicit function
theorem argument [6, Theorem 9.1] holds for the existence and uniqueness of
solutions to the Riemann problem. In the context of the method presented in
section 2, these conditions make our iteration scheme a contractive mapping;
and this implies both existence and uniqueness of the solution in the neighbor-
hood of the fixed point. When the Riemann problem is well-posed, possessing



a single Lax-like solution comprised of simple waves, and when the algorithm
described here converges, it converges to the correct entropy solution. More
generally, existence and uniqueness of solutions to the Riemann problem is an
important open problem except for special systems.

In section 3 we analyze the equations of motion for elasticity in conservation
form and provide details relevant to the implementation of the scheme out-
lined in section 2. In section 4 we present example calculations. In section 5
we discuss important cases in solid mechanics in which the assumptions em-
ployed in section 2 break down. These are by no means exhaustive discussions,
as even in gas dynamics a large number of pathological conditions may occur
[8]. Section 5.1 discusses lack of genuine nonlinearity that occurs at special
points of high symmetry in configuration space. Section 5.2 deals with degen-
eracy that occurs on the reference isentropes of elastically isotropic materials.
Section 5.3 deals with the degeneracy and eigenvector deficiency that occurs
when shear strength is lost as upon melting. Conclusions are summarized in
section 6.

2 An Exact Iterative Riemann Solver

Here we consider a general hyperbolic system of conservation laws in one
dimension,

U+ FU), =0, (1)
with U, F' € R". We assume that the matrix A,
A= DyF(U), (2a)
with eigenvalue decomposition
A=RAL, L=R, (2b)

has 2m distinct and genuinely nonlinear eigenvalues, with the remaining n—2m
eigenvalues being linearly degenerate and equal. Here A is the diagonal matrix
of eigenvalues, assumed ordered:

M< < <A<t = = m <A m< <1<, 3

and R is the matrix whose k™ column 7}, is the k™ right eigenvector of A. The
conditions of genuine nonlinearity and linear degeneracy are

(re-Du)\e 20, k=1,.mn+1—m,...n (4a)

and
(r - Dy)Ap =0, k=m+1,...,n—m (4b)



respectively.

With these assumptions, the solution to the Riemann problem

w%m:{

UL Z‘SO
Up >0

(5)

will consist of 2m + 2 constant states bounded by shocks, or rarefaction fans,
of the 2m nonlinear waves and by a contact discontinuity [7]:

U=Up | Uv | G| o Un | Unia | Vo | Usmir=Ur (6)
l—wave 2—wave contact 2m—wave

with, schematically,

Jri(U)da k—rarefaction; or

[h:%4+{wﬂ@—FWFMﬁkkﬂm¢, (7)

where s;, is velocity of the £—shock.

The solution {Ux}, k =0,...,2m + 1, is subject to a consistency requirement;
the so-called entropy condition. For k-rarefactions,

)\k(Uk—l) < )\k(Uk) (8)

and for k-shocks,
/\k(Uk—l) > S > /\k(Uk) (9&)
/\k—l(Uk—l) < s < /\k+1(Uk)- (gb)

Additionally, there is a condition of consistent ordering obtained from consid-
eration of (6), but not contained within (9), for adjacent shocks:

S < Sk41- (10)

Our approach to obtaining solution (6) is based upon the multiple shooting
method for boundary value problems. The Riemann problem is essentially
a set of 2m boundary value problems: to be determined are the changes in
state variables across each wave. The boundaries (the 2m interior constant
states, or equivalently the end points of each wave or contact) are subject
to the condition that the state variables are continuous functions of wave
amplitude from the left and the right. These are free boundary problems since
the amplitude of the waves «j must also be determined.

It is well known [7] that one may choose a parameterization ¢ such that for
both a k—shock and a k—rarefaction one has



d

d_{—“U(g) o = 1(Uh) (11b)
d—QU(S) =Tg- DUTk(U)|U:U0 . (11C)
dé o

We wish to exploit this second-order continuity in U to choose a wave strength
parameterization .. One choice consistent with (11) (and also (22,23) below)
is

ar(U(§)) = l(U(0)) - (U(€) — U(0)), (12)
where [, (U(0)) is the k™ left eigenvector of the matrix A = Dy F(U), evaluated
at the centering point U(0) of the wave.

To be generally applicable, (12) requires that «(£) be monotonic. For general
equations of state this cannot be guaranteed for strong shocks, and this is
consequently a limitation of the method presented herein. This problem is
discussed further in section 2.1.

Let us denote by Z/l,gM) the M*'™ iterative approximation to U, and by a,(cM)
the M'™ iterative estimate of the strength of the k-wave. For all iteration steps

M we have U™ = Uy, and UM, = Up.

Associated with the M™ estimates {U{(M) o™} are 2m(n+1) scalar measures

of error. Across each genuinely nonlinear wave we have a vector error Hy €
R":

H,CL(Z/{k,l,Z/{k, Ozk) = Uk (L{,Ejf[l), Oék) — L{IEM) (133)
HE Uy, U, o) = Uy (UL, o) — U™, (13b)

and associated with the contact discontinuities is an error vector H, € R?>™,
HC(Z’{MaunH—I) = P(um+1) - 'P(Z/{m), (14)

where P : R* — R?™ is the projection of U onto the vector space orthogonal
to that spanned by the contact discontinuities. Vector P is a set of indepen-
dent nonlinear variables which are Riemann invariants of the (n — 2m)-fold
degenerate contact discontinuities. That is, the jump conditions at the contact
are satisfied if and only if these variables are continuous at the contact.

Our iterative scheme seeks to zero Hj and H,. using a modified Newton’s
method to perturb the estimated states U, and wave strengths ay. To the left
of the contact, we have

OHL
0=H - IAU + —Aoy (15a)
8011
OHE OHE
= HL — JA —2A 2 A 1
0 ) Z/{Q + aa2 Qo + 81/{1 Z/{l ( 5b)



OHL OHL
0= HE: — IAU,, + W’”Aam + w—mAum_l, (15¢)
m m—1

at the contact we have
0 = H. + DyP(Ums1) Athpi1 — DyP (Un) AUy, (15d)

and to the right of the contact we have

OHE OHE
0=HE | — IAUp + aam: Atyiq + aum;l AUy io (15€)
OHZL OHE
0=HE | — IAUy, 1 + aam_lAO‘?m* + azjm—lAum (15f)
2m—1 2m
OHE
0= HE — IAUpp + -2 Aoy, (15g)
8a2m

as defining equations for the perturbations A and A« that would zero the
error vectors H if they were linear.

In block-factored form, this sparse linear system of (2mn + 2m) equations in
(2mmn + 2m) variables is

oHL
3IH 3 ) a%alL
o auf I v
__OHY I __OHY
oUs 1%
DUP(Ug) —DUP(U4) 0 X
I _BHE __OHE
s da
I _oHEF  BHEF
g da
I
AU, HE
AUy H}
AlUs HE
AU, | = | H. (16)
Al HE
Als HE
Aa HE

(illustrated for the particular case m = 3). By a sequence of simple manipula-
tions, this system may be triangularized. First, multiply (15¢) by —DyP(Uy,)
and multiply (15e) by DyP(Up,+1), then add these equations to (15d) to elim-
inate AU, and AU, ;. Carrying on similarly, a block-triangular form results.



For the case m = 3 one obtains

C L
— oH 1 I Aa
da
_omp _emf Ath
d U
oHE ' OHL Alty
" —au 1 AlUs | =
_ B;Ia(i I AZ/I(;
_ 9H[ __OHE I Al
oo Ug
_oHF _oHf Ay
oa oUs

(17)

in which only one diagonal block element, C is nontrivial. Thus, instead of
solving a single (2mn + 2m) x (2mn + 2m) system (16), one need only solve

a single (2m) x (2m) system:

Aa1
Aa’?m

with

™ oHF \ oH[ . )

DyPi(Un) l ];[Jrl s | Ba- if & < m;
Cix = N o1
— OHF \ oHEF .
—DyPi(Un1) (l_gﬂ 3511) ;T’; if k >m+1;
“ mo OHF
b ==Y DuPi(Un) | I =+ | HF

k=1 I=k+1 Oy

2m . k—1 aHlR R |
+ z DyPi(Unm1) H H; + (H.);.

k=m+1 l=m+1

Then, evaluate sequentially

HE
AZ/ﬁ = 8 L AOZl
* Ba o
OHL aHL
A Hf + —=2A 2 A
e = day 202 g, B
OHL OHL
AU, = HE + " Ax ™A
U o N m+aum . Um 1
and
AZ/{Qm - HR + 8H2m ACk2m
8a2m

(18)

(20a)

(20D)

(20c)

(20d)



OHE OHE
A — — HR 2m*1A m— QTTL71A m 20
Uom—1 2m-1F Oagm—1 Gom—1 7+ Uy, U (20¢)
OHE OHE
AU, = HE mE Aoy, mEL AU, 20f
+1 m—+1 + 6am+1 Om+1 + 6um+2 +2 ( )

for the 2m n—dimensional state vector perturbations Alfy.

With error vectors H and all derivatives computed at states (M) with strengths
o™ we then obtain the (M +1) iterate

UM = ™ 4 A, (21a)
Of,(cMJrl) = O,/,(CM) + CAO% (21b)

for k = 1,...,2m, with 0 < ¢ < 1 a line search parameter in the modified
Newton method. We use an approximate line search which seeks the smallest
nonnegative integer ¢ such that the sum of squares error for iterative estimate
(M + 1) with ¢ = 27" is less that the sum of squares error for estimate (M).

One way to initialize our iterative scheme is with the result of a linear de-
composition. We begin by constructing an estimate to (6) by resolving the
jump [U] = Ugr — Uy, in right eigenvectors 7 of a composite matrix of right
eigenvectors R after [9]

OZI(CO) = iefR_I(UR — UL) (22&)
U =u, + 0%, (22b)
for k=1,2,...,m; and
a,(go) = :|:62+k_2mR_1(UR — UL) (233)
U = U, F iV om (23b)

for k = m+ 1,m + 2,...,2m. The sign ambiguity in (22) and (23) reflects
uncertainty in the sign of r - Dy A, the change in wave speeds along a simple
wave, and the interpretation of ay, > 0 as being a shock or a rarefaction.
This initial condition is a formally second-order accurate approximation to
the converged solution.

A less accurate initial condition comes from taking L{,EO) =Upfork=1,2,...,m;
u,ﬁo) =Ugfork=m+1,m+2,...,2m; and a,(co) = 0 for all waves. Numerical
experiments have shown that this first-order accurate initial condition is some-
times better than the second-order approach, since the second-order approach
may select points Z/{,EO) in phase space that are not physically valid, and may
prevent the algorithm from converging. When the algorithm converges with
both sets of initial values, both solutions are numerically equivalent.



2.1 k-shocks

Our treatment of shocks follows an approach recommended by P. Colella,
based on the finite difference equations (24-27). Let oy parameterize the
strength of a k—shock centered at state Uy,

Qp = lk : (U - U()), (24)

where [, is the k' left eigenvector of Ay = A(Up), and define the vector o to
be

aro=U — U (25)
with normalization
lp-0=1. (26)
Then,
F(Us + axo) — F(Up)
877
is a finite difference representation of the shock Hugoniot relations.

= sp (27)

To solve (27) we expand p in the right eigenvalues of Ay,
o= ", =1 (28)
i

Then (27) may be viewed as n equations in n unknowns: the shock velocity s,
and the n—1 nontrivial expansion parameters ;.

For each estimate (v, s) of the solution there is a vector error measure

F(Uy + axe) — F(Up)

= — 29
0 o S0, (29)
with derivatives
Ys = —0 (30)
and
Yy, = (A—=sl)r;. (31)

A Newton iteration may then be constructed by solving for the change in (v, )
that would zero v if it were linear:

AR = By (32a)

B=[-- (A=sDrigx --- —ol. (32b)



In the limit of infinitesimal shocks, the matrix approaches

lim B=[--- (Ao— ND)ri -+ —1%] (33)

ap—0

OV T

which is full rank since the vectors 7,4, 7, form a complete set, and the eigen-
values A are assumed distinct. This analysis also holds for linearly degenerate
contacts of multiplicity one.

For finite strength shocks a proof that B is invertible is lacking. If the state
U is near a Hugoniot locus, then (A — sI) will be invertible for the general
(nonzero shock strength) case since s is not an eigenvalue of A(U). The matrix
appearing in (32) may therefore be written

B=(A—-sI)[Ry| —(A—sI) g, (34)

where Ry, is the n x (n—1) matrix of right eigenvectors of Ay = A(Up), with
vector 7 omitted. The overall matrix is therefore invertible if (A — sI)~!p has
a component in the nullspace of Rj, or if

B(A-s) o= Z%lkT(A —sI)7'r; #£0, Ve = 1. (35)

Since (A — sI) is nonsingular and is unrelated to Ay a failure of (35) would be
accidental.

So, given a k—shock strength a4 one may employ a modified Newton iteration
based on (32) to compute U(Up, ). This is the shock version of the function
employed in (13) for the computation of error vectors H"/%,

The Newton iteration for the multiple shooting method calls for derivatives
of U(Uy, o) with respect to the centering vector U, and with respect to
strength ay. Differentiation of the jump condition F(U) — F(Uy) = s(U — Up)
with respect to the shock wave velocity s, and with respect to the centering
vector Uy, gives

UUs, 8)v, = (A(U) — sI)™H(Ay — sI) (36a)
U(UOa 5)5 = (A(U) - SI)il(U - UO): (36b)

and changing independent variables one obtains

_ U(Uo, S)S a
UUs, ) = T 5), (37a)
U(Uo, OJ)UO = U(U(), S)UO — U(UO; 3)50(;(([]U0()’,83)[10 (37b)

10



Next, differentiation of (24) gives

a(Uy, 8)s = LU Uy, 8), (38a)
CX(UOﬂ S)Uo = ZZ(U(U% S)Uo - I) + (lg)Uo(U - UO)’ (38b)

and in combination,

_ (AU) = sI)7H(U = o)
U @)a = ma@y =501 (0 = Ty) (39a)
U(Us, a)er, = (A(U) = sI)(Ay — sI) — U(Up, ), X (39b)

(FIA@) = sI)™ (Ao — AU + () (U — Ty))

determine the derivatives necessary to construct 0Hy/0a and 0Hy/0U for
shocks in the multiple shooting method.

If the reparameterization «(£) (12) is not monotonic, then two or more values
of wave parameter &, say £ and £”, will give the same value of parameter a:
a(¢') = a(&"). This implies that the finite difference equation (27) will then
have multiple solutions using this value of a. In this case, the solution obtained
by the algorithm describe above will be sensitive to the starting value of the
iteration sequence.

2.2 k-rarefactions

For rarefactions we have the ordinary differential equation based on (11) and
(12):

U dUds (V)
da ~ dE da 1Trp(U)
U(0) = Up. (40b)

(40a)

Since shock and rarefaction branches need be only C* for the multiple shoot-
ing method to be second-order, it is sufficient to evaluate d¢/da only at the
centering point Uy, where d€/da = 1. Thus, we have the initial value problem

dUu
% = Tk(U) (41&)

U(0) = U, (41b)

which we solve together with the initial value problem

e = (Den(U()) W () (422)
W(0) =1 (42b)

11



derived by differentiation with respect to Uy of U'(Uy, ) = f(Up, U(Up, x)).
We evaluate these initial value problems with a 4""-order Runge-Kutta method.
Then,

UUp, )o = rp(U(a)) (43a)
U(Uy, )y, = W(a) (43b)

determine 0Hy /0 and 0Hy/OU for rarefactions.

3 Application to Hyperelasticity

The 1D (direction 7) equations of hyperelasticity may be written [9]

pv vppv —elo 0

9 pE 9 oppE — €, 0v 0

prl + B gy, =| (vx(Vxg))le |, (44)
ges n guday (v x (VxgT))Te,
ges guisy (vx (Vxg")Tes

where v is the velocity, p the mass density, E the total energy, g the inverse
deformation tensor, and o the Cauchy stress.

These equations are based on the kinematics of a solid whose motion is char-
acterized by a time-dependent mapping ¢ from material (Lagrangian) coordi-
nates @ to spatial (Eulerian) coordinates "

7= ¢(a,t). (45)
The gradient of this mapping is the deformation gradient F

_dzg

F:Vaqs; Faﬂ_@a

(46)

and the inverse of F' defines ¢g; ¢ = F~!. F and g are subject to the equality
of mixed partial derivatives; equivalently,

VvV x g =0. (47)

The extra terms v x (V X g7) in (44) are therefore zero on the constraint
manifold. Their presence guarantees that the system is hyperbolic when V x g7
differs from 0, as it must in numerical computation [3,4,9].

The weak form of constraint (47) is

lges]n =0, 7-n=0 (48)

12



that is, the jump in direction n of tangential components ge, of tensor g is
zero. Analysis of (44) below shows that this condition is satisfied automatically
in smooth one-dimensional flow. Therefore, for those Riemann problems where
(47) is satisfied by the initial condition, it is satisfied numerically and analyti-
cally for all time. Consequently, our analysis of the one-dimensional Riemann
problem will ignore the right hand side nonconservative terms [v x (V x g7)]~.

A slightly broader class of problems may be considered in which (47) does
not hold strictly in the initial condition. Physically, such a problem may be
constructed by tearing the material into two parts, subjecting the parts to in-
dependent homogeneous one-dimensional deformations, then rejoining them.
At the resulting contact, the underlying Lagrangian coordinate is discontin-
uous and V x g7 is not defined. The weak form of the constraint then gives
[ge:]n = constant at the contact. For such problems the constraint will be
obeyed on either side of the contact, and the weak form will hold at the con-
tact for all time. Again, ignoring the nonconservative right hand side terms
gives the proper physical result.

The mass density p is related to the tensor g,
p=podetg (49)
where py is the density in the undeformed (F' = g = I) reference frame.

We derive the stress o as a thermodynamic derivative of the internal energy
E=F— 12
2Y

géq. (50)
s
In our analysis of (44) we will make reference to the n—directed acoustic wave

propagation tensor A[n],

doe,

Aln] = - Dg¢
n

g- (51)

Both o and A[n] are symmetric. The acoustic wave propagation tensor is
positive definite for thermodynamically stable substances [9], and may be de-
composed to yield the Lagrangian wave speeds A, = diag(Aac,1; Aac,2; Aac,3):

A = pXachgeXee - (52)

We assume without loss of generality that the eigenvalues are ordered, A,.1 <
Aac2 < Aae3, and that X, is unitary, X' = X7

The linearized matrix A = Dy F(U) derived from (44) is

(53)

13



do
vel +v,I 0 (—gaer — pvvget F)

TO' a
(Bel = “17) v, (=521 — pBuyel F + v oeyel F)

o n dger
AU) = O1p% 0 (g — b1pgvel F)
5277% 0 (—anguel )
O3 % 0 (—d3pgvel F)
doe oe
(= Bges — PUVn€a 5 F) (— ggez — povyed F)
(= 1}3(3—06" — pEvyel F +vToe el F) (—Uai—ae” — pEvyes F +vToe el F)
(—b1pgves F) (—=01pgves F)
(vgI — bopgvel F) (=02pgves F)
(—d3,9ve] F) (vpI — b3,9ves F)

with eigenvalues A = diag(v,/ —mAqe, vy, vyl vyl vyl +A,.). Here,

0
=10 (54)
1

S = O
o o=

is a permutation introduced to assist in establishing the canonical ordering

(3).

In the special case n = 1, the right eigenvectors R are:

(55)
(pvel Xoo — pXoelae)m 0 pv [62 —e Tg]
(pEef X, — eloXoe — pvT XyeNge)m 1 pE [62 —e] Tg}
R= (9Xae)m 0 —g7T,
0 0 g
0 0 0
pv e [ —el Tg] (pvel Xoe + pXaclae)
pE [ —€ T3] (,OEE’{XM - e{UXac + pUTXacAac)
—ng (gXac) ’
0 0
g 0
and the left eigenvectors L = R™! are:
(56)
— LA X 0w X+ ALX lvel |F
—vT 1 [p(v®*—E)el +elo]F
L= 0 0 0
0 0 0
+3; EAAX 0 S[X ALK el | F

14



AT X I T+ A X ved |F o dn[X M Y+ At X ved | F
[p(v?—E)el +eloTy|F [p(vP—E)el +el o3| F
F 0
0 F
S X To—Ap X Jved |F S X Ts— A X lved |F

ac

In (55) and (56) the symbols Yo and T3 denote

Ooey ! (8061 ) 1 P (8061 )
T, = = ——XoeA X | =— 57a
2 (6961 . 9) g sg P dges . g (57a)
80'61 >_1 (80'61 ) 1 91 <80'61 )
T = = ——XoeAyi Xoe | 5— . (57b
3 ( dgeq g g dges s g P dges 5 g (57b)

In 1-directed flow, it is apparent that the quantities ge; and ges may be
dropped from consideration in the analysis of the nonlinear waves. Likewise,
any passively advected scalar may be dropped, including terms describing
the plastic deformation tensor and work hardening parameter [9]. We may
therefore restrict ourselves to the reduced system in variables pv, pE, and ge;,
for which

vel + v I 0 (—g‘;i — pvviel' F)
A=| (Eel — E%FTU) vy (—”Ta‘Z—;"’l — pEviel F +vToe el F) |, (58a)
2 0 (v ] — gvel F)
p(ve’{Xac_XacAac)ﬂ- 0 p(ve’{Xac'i_XacAac)
R= p(e’{[EI_%]Xac_’UTXacAac)ﬂ' 1 p(e’{[EI_%]XaC_i_UTXaCAac) )
(gXac)ﬂ— 0 (gXac)
(58Db)
— TN Xo 0 X+ A X el |[F
L= —oT 1 [p(v?—E)ef+elo]F |, (58c¢)
ol 0 [N - AGX G ver |F
and
A=diag (v1] — A4, v1, V1] + Age) - (58d)

For this system, then, m =3 and n = 7.

Although (55) and (58b) appear to be deterministic analytical formulae, they
are not. This is because the acoustic eigenvectors X,., chosen to be unitary, are
determined by (52) only to within a sign. To keep the sense of the eigenvectors
consistent across an integral curve, and to maintain consistency with Lax’s
entropy condition, the sign of columns of X,. must be fixed to some standard.
We adopt a standard, which affects interpretation of the wave strengths ay,
by analysis of the condition of genuine nonlinearity. In the present case the

15



test for genuine nonlinearity gives

qa =14+ Dyvy =0 (59a)
Ga—y = (Ta— - Dy)(v1 — Aacyy) (59b)
O\
= _)\ac Xac - — e Xac
Y 717 agal g g /3 7ﬂ7
Qaty = (Tayy - Du)(v1 + Aacyy) (59¢)
oA
= +)\ac Xac + e o Xac
Y 517 agal S g ,B 7137

for v =1, 2, 3. We choose, arbitrarily, to fix the sign of columns of X,. to make
¢y, 7 = 1,2, 3, negative. With this choice, Hj (13a) calls for rarefaction when
a < 0, and a shock when a > 0. The sense of integration is different for HJ
(13b) because for these terms the wave is centered on the right state. Thus,
the limits of integration are effectively reversed at the same time that the sign
of q is reversed. So, again, a < 0 calls for a rarefaction and o > 0 a shock.

Consideration of (55) shows that the linearly degenerate eigenvectors ry obey

(rr.- Dy)oe; = 0 (60a)
(ri - Dy)v =0 (60Db)

where the derivative of oe; is taken at constant entropy. It follows therefore

that the 6-dimensional projection P maps from (pv, E, ge1) onto (v,0er) (see
(15d)):

P (U; ges, ges) =( y ) (61)

geq
and therefore (see (19)):

(1) 0 (et 1)

__ doer| T 1 doer doel 2 doel
( € |, p) (p o€ g> (3961 g+(v E) %5
The derivatives Dyl and Dy, appear in the shock and rarefaction wave curve

derivatives (39b) and (42a). These terms require determination of Dy X, and
of DyA,.: a first-order perturbation problem.

)

Denote the eigenvalues of A[1] by the diagonal matrix @ (Q = pA2,), Then,

AX e = XoeQ (63a)
-AUXac + -A(Xac)U = (Xac)UQ + XacQU (63b)
Xa_clAUXac + QXa_cl(Xac)U = Xa_cl (Xac)UQ + QU- (630)
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The diagonal entries of (63c) give

(Qkk)U = (Xacek)TAU(Xacek) (64&)

and with Qgx, k =1, 2,3 distinct, the off-diagonal entries give

(Kpeer)y = Y Hecs) AvXacer)

Xoet): 4b
2 Qu-Q; (Xacey) (64b)

Partial derivatives with respect to conserved variables (pv, pE, g) are obtained
from partial derivatives with respect to primitive variables (v, £, g) with:

0 1 0 Vo O
- | e 65a
0pvq oy P 0Vq, g P o€ o (65)
0 10
_ == 65b
opE o P o€ . (65b)
0 0 0 0
- + (0y0y — E)Fpq na|  —vyFpa 2 (65¢)
09ap oE.pu 0Gap £ i o€ . 7 vy €
4 Examples

4.1 Hyperelastic equation of state

To illustrate the method with sample calculations we use a hyperelastic equa-
tion of state model after [10]. We assume a separation of the total internal
energy as follows:

E(C*, 8) = Enlls) + EulI3, S) + (I, Iy, I5), (66)

where &, describes the isentropic, hydrostatic compressional energy;&; is the
thermal energy associated with changing entropy at constant volume; and &;
is the energy associated with isochoric shearing. In (66) I;, I5, and I3 are the
isotropic invariants of the elastic Green tensor C*:

C¢=FT'F (67a)
L(C°) = tr(C°) (67b)
L(C*) = % [(C)? = tr (C*)’] (67¢)
I,(C°) = det(C®) = (%)2 (67d)
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The hydrostatic energy is given by the universal equation of state [12,17,16],
determined by the zero pressure isentropic bulk modulus Kys and by the isen-
tropic pressure derivative of the isentropic bulk modulus at zero pressure,

(G — 1P TR -

3K —1) [(%)/ _ 1] | (69)

Density p is understood to depend on I3 through (67d).

Ei(I3, S) is the thermal part, modeled on a Mie-Griineisen form

S-S5 — (I

&3, S) = GyTy (exp [ e O] - 1) exp lw] , (70)
q

where Cy is a constant heat capacity, So and 7 are the entropy and tem-

perature in the reference configuration (at zero pressure and density pg), and

where (I3) is the thermodynamic Griineisen parameter given by the model

equation
(Po)q (71)
Yy=%l=], 71
P

with vy and ¢#0 constants.

The energy change due to shearing motion at constant volume is given by

Es(Lh, I, I3) = %5) [ﬂ]lj?:l/ii + (1= B) LI - 3] ) (72)

The parameter #, 0 < 8 < 1, is an adjustable parameter chosen to control
the symmetry of the shear potential away from the hydrostat (see [11]). The
function G(p) is the shear modulus, also constructed to follow the universal
equation of state formalism, and determined by the zero pressure shear mod-
ulus Gy and the pressure derivative of the shear modulus Gj, also evaluated
at zero pressure:

G(p) = Go

1/3 -1 2/3
p 4 (Kos ' ) P _r
1— L) e (g -1 £ ¢
(1=re) (Po) 3¢ Go Go Po c
(73)

re = g [Ié—‘):Gg - 1] [(%)1/3 - 1] . (74)
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Note that on the hydrostat of an elastically isotropic solid I; = 3I§/ % and
12:313?/3, and so & = 0.

To determine temperature 7" as a function of g and £ we first rearrange (66)
to solve for &,

E=E - &) — &L, I, 1), (75)
and then differentiate to obtain
o0& & Yo —
oSlce  Cy Thoexp [ q (76)

Parameters for this model, chosen to approximate the elastically isotropic
response of copper, are given in Table 1.

Table 1

EOS parameters for elastically isotropic approximation to copper
parameter value units
po 8.93 lg/cc]
Kos 138 [GPa]
Kyg 4.96 [
Gy 46.9 [GPa]
G| 0.57 (]
B 0 [
T 300 K]
Cy 3.9 x107*  [kJ/gK]
70 1.96 [
q 1 I

4.2 Solution of the Riemann problem

Here we illustrate the use of our method in the computation of a simple
Riemann problem solution. Left and right states Uy, and Ug are constructed
from the parameters in Table 2. The components of g were chosen arbitrarily,
but so as to avoid some of the pathological conditions described in section 5.
These initial conditions represent a moderate strength longitudinal compres-
sion, with a small component of shear. The strength is in the range attainable
by single-stage propellant-driven guns, but represents less than 10% of the
velocity range of planetary impacts.
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Even with these relatively mundane conditions, significant discrepancies be-
tween the exact solution and the approximate solution are observed for some
variables. The approximate solution, shown in Figure 1 by dashed lines and
open symbols, was obtained by the procedure described in [9] using a primitive
variable representation of A (i.e., p, v, £, and gey, in place of the conservation
form variables pv, pE, and ge;). The exact results are displayed with solid
lines and filled symbols. Circles represent the end points of the 6 nonlinear
wave systems, and squares represent the contact discontinuity.

Table 2
Initial conditions for calculation shown in Figure 1

parameter value units
left state:
ér -3.1 kJ/g]
1 0 0
Jgr 0.01 1.1 0 (]
0.02 0 1.2
2
vr, 0 [km/s]
0.1
right state:
Er -3.1 kJ/g]
1 0 0
JgR —-0.02 1.1 0 (]
0.01 0 1.2
0
VR —0.03 [km/s]
—0.01

The exact solution consists of a 1-shock, a 2-rarefaction, a 3-shock, a 4-shock,
a b-rarefaction, and a 6-shock. Each wave system obeys the Lax entropy con-
ditions. The existence of rarefactions is not immediately obvious in the figures
because the width of the wave fans is small. The 2-rarefaction is spread from
only —1.6606 to —1.6600 km/s, and the 5-rarefaction from only 3.6600 to
3.6608 km/s.

A dramatic failure of the approximate solver is seen in the temperature and
entropy fields. The approximate solver predicts negative temperatures, and
pure imaginary entropy (the zero real part is plotted in the figure). The internal
energy calculation is not unreasonable, but the partitioning of internal energy
between compression (&, and &) and thermal (&;) terms is incorrect. The
result is a nonphysical approximate solution.

Figure 2 shows the result of a calculation using the initial conditions of Table
3. This test problem is similar to the first, but has initial states consistent with
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Fig. 1. Test problem showing approximate Riemann solution (IC in Table 2) after [9]
(dash line, open symbols), and ‘exact’ result (solid line, filled symbols). The abscissa
is wave velocity in km/s. Density p (range 11.7876 to 13.5924 g/cc), internal energy
€ (-3.1 to -1.925 kJ/g), inverse deformation tensor gi; (1 to 1.153), go1 (-0.024 to
0.015), and g31 (0.01 to 0.041), and normal stress o171 (-155.9 to -62.00 GPa).
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Fig. 1— continued.
Stress 091 (-1.094 to 1.735 GPa) and o03; (-3.273 to -0.720 GPa), entropy S (0
to 1.808x107° kJ/g K), temperature T (-478 to 612 K), velocity v, (0 to 2
km/s) and v, (-0.035 to 0.021 km/s).
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Fig. 1— continued.

Velocity v, (-0.01 to 0.1 km/s).

uniaxial deformation. In this case, the 2- and 5- waves are linearly degenerate
across the wave system. The solution consists of a 1-shock, a linearly degen-
erate 2-shock (a contact discontinuity), a 3-rarefaction, a 4-shock, a linearly
degenerate 5-shock (another contact discontinuity), and a 6-shock.

The state space encountered in this example violates several of the assump-
tions made in section 2. In particular, the 2 and 3, and the 4 and 5 waves are
degenerate at points across the wave system. Solution of this problem requires
modifications to the algorithm of section 2 described in section 5.2.

Table 3
Initial conditions for calculation shown in Figure 2
parameter value units
left state:
&L -3.9 kJ/g]
1 00
gL 001 1 0 (]
0 01
2
vy, 0 [km/s]
0.1
right state:
Er -3.9 kJ/g]
1 00
9R 0 10 [
01 0 1
0
VR —0.03 [km/s]
—-0.01
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Fig. 2. Uniaxial isotropic case with degeneracy (IC in Table 3). Approximate solution
after [9] (dash line, open symbols), and ‘exact’ result (solid line, filled symbols). The
abscissa is wave velocity in km/s. Density p (range 8.930 to 10.810 g/cc), internal
energy & (-3.901 to -3.374 kJ/g), inverse deformation tensor g1 (1 to 1.211), go1 (0
to 0.0608), and g3 (0 to 0.127), and normal stress o131 (-60.20 to -0.73 GPa).
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Fig. 2— continued.
Stress 091 (-3.40 to 0 GPa) and o3; (-7.03 to 0 GPa), entropy S (0 to

6 ;

4 ;

2.509x107* kJ /g K), temperature 7" (-759 to 784 K), velocity v, (0 to 2 km/s)

and v, (-0.115 to 0.020 km/s).
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Velocity v, (-0.08 to 0.1 km/s).

5 Some Pathological Conditions

In this section we consider some pathological conditions that occur in solid
mechanics. This treatment is not exhaustive, but covers several special cases
that occur commonly with the simple elastically isotropic model presented in
section 4.

5.1 Lack of genuine nonlinearity at points of high symmetry

When g is diagonal but not proportional to I, C* is also diagonal and not pro-
portional to I, with the result that X,. will be proportional to a permutation
of I. The three acoustic waves are aligned with the principal directions. The
fast (Aae3; A1 = v1 — Age,3) wave is a longitudinal mode, X,.e3 = e;, and the
slow waves are orthogonal transverse modes. At these special points, 71 - Dy A;
is nonzero, and the ordering method (59) may be used without ambiguity.
However, the transverse wave speeds are local extrema, hence 75 - Dy = 0,
etc.

Let us suppose this circumstance, with Ao a local minimum. Then, whether
aip 18 positive or negative, a finite perturbation dU = «yry will increase Ao:
a rarefaction is required whatever the sign of as. Conversely, if \s is a local
maximum, then a shock is required whatever the sign of «s.

Therefore, to obtain a solution obeying Lax’s entropy condition it is insufficient
to select the wave type by the sign of o when ri - Dy, = 0 at the centering
point.

Also, a simple wave trajectory passing though such a point of genuine non-
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linearity must terminate at this point in order to obey the constraint that
wave speeds vary monotonically across the wave. Computationally, this will
occur if the acoustic eigenvector sign convention ((59) and subsequent discus-
sion) is enforced. However, doing this makes the sign of OU/0«a calculated on
the rarefaction indeterminate, and this in turn may cause the overall multiple
shooting method to fail to converge. Therefore, to assure convergence, the sign
of vectors X,. must be constant along the rarefaction integral, even though
this may violate wave monotonicity constraints on a given iteration. At the
start of a rarefaction wave curve integration, the sign of X,. is determined as
described by (59). Subsequent evaluations of X,. choose the sign to maximize
the inner product of the appropriate columns of X,. with the column obtained
in the previously evaluation on the wave curve.

5.2 Degeneracy I: 0 < Ager = Aae2 < Aae3

The analysis above assumes genuine nonlinearity and distinct eigenvectors.
Both of these assumptions break down in a very common circumstance in
elastically isotropic materials. In common practice, one constructs the hyper-
elastic energy function for an elastically isotopic material as a shear pertur-
bation to a hydrostatic reference configuration. When evaluated at a point on
the hydrostat, the shear modes are degenerate by virtue of symmetry. Further,
since the shear energy is a minimum on the hydrostat the shear modes are
linearly degenerate on the hydrostat, although they are genuinely nonlinear
elsewhere.

Two problems arise in this case. First, given \y = Ase1 = Aue2, the eigenvectors
X,ce1 and X, ey of the acoustic tensor are not uniquely determined: any linear
combination of these eigenvectors is itself an eigenvector with eigenvalue \,.
Neither the shock nor the rarefaction algorithms are uniquely defined in this
case. Second, the perturbation analysis (64b) is not appropriate. Both prob-
lems may be addressed if the degeneracy local: i.e., if upon perturbation of
the centering state along either a shock Hugoniot locus or a rarefaction wave
curve the degeneracy is lifted.

We first examine the problem of degeneracy alone (neglecting the lack of
genuine nonlinearity) from a formal point of view to analyze the solution
properties. Across a wave k that is degenerate, the degeneracy may be broken.
In the particular case of an elastically isotropic hyperelastic solid constructed
from an isentropic reference curve, this will always happen. Consideration of
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(63) and (64) shows that if ny degenerate waves are hybridized

Xoc€ds Xaced,
: = : © (77)
X(;cednd Xacednd
in such a way that
T T
(Xécedl) Ay (thzcedl) e (Xclwedl) Ay (Xécednd)
: - : (78)
(Xicean,) " Av(Xpeea) -+ (Xieea,, ) Av(Xpced,,)

is diagonal, then terms (X .eq)" Ay (X eq4,), i # j will be identically zero,
and the singularities that would otherwise occur in (64b) will disappear.

In the present circumstance, let us perturb A not by differentiation, but by the
action of the ry degenerate wave, AA = ry - Dy A. Combining (77) with (78)
we obtain an eigenvalue problem, with eigenvectors © being the hybridization
matrix, and eigenvalues AQ) corresponding to the change in eigenvalue upon
perturbation A (cf, (64)):

(Xucedl)TAAXacedl e (Xacedl )TAAXacednd
(Xacednd )TAAXacedl T (Xacednd)TAAXaced"d
0diag(AQaydys -+, AQa,,dy,)-

The matrix (Xg;A.AXaC) is symmetric, with real eigenvalues, and © is unitary,
©~! = O7. In the ny = 2 case © may be represented as a rotation

cosf sinf
_<sin0 —c0s9>' (80)

To be specific, let us suppose that we are interested in computing state Uy
from state U, in the degenerate case. The relevant eigenvector r, depends on
Xac,2, which is not yet uniquely defined. According to (58b), across wave 2 we
have perturbations

Ager = ge1 X, o (81a)
A€ = —eloX,,, (81b)
0A 0
AA,, = W(Zﬁ‘gelX;w — glg”e?aXfw,Q (81c)
AQ — QeT X!
Ay, — B¢ QpQ;l ac? (81d)
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Fig. 3. Wave labeling conventions upon lifting Ao, A3 degeneracy in state U; with
perturbation dre, chosen to enforce canonical ordering.

The Ary perturbation will break the symmetry and lift the degeneracy because
the symmetric reference configuration is defined for zero shear.

By virtue of (80), we may consider (79) with (81c) as a set of simultaneous
equations in #. T'wo solutions may be obtained in general, one of which satisfies
the wave ordering denoted in Figure 3. One solution comes from considering
the solid line A(«) in Figure 3 as A4 2; the other from considering the dashed
line.

This settles the question of uniqueness: a self-consistent prescription is given
above for lifting the degeneracy and identifying the relevant vector X,.e, for
the computation of the 2-wave. Unresolved are the derivatives Dyl and Dyry
appearing in (39b) and (42a) respectively. The Dyry derivatives are evaluated
along the rarefaction integral curve, where degeneracy will already be lifted
by the perturbation 75 - Dy-, and so these derivatives pose no special problem.
The derivatives Dyl, appearing in the shock problem are centered at the
degenerate point Uy, however, and there the formal analysis breaks down.

For any perturbation f-Dy.A, a different hybridization ©(f/|f|) is required to
cancel singularities in (64b). Since the hybridization depends on the direction
of the perturbation, and not its strength, X,. is not continuous at U, and
therefore the derivative Dy X,. does not exist.

However, if the degeneracy is local, in the present case when evaluated at U,
then unless ay = 0 we expect the degeneracy to be lifted in Us. Then, instead
of

HQL = Ug(ul, CYQ) — Z/{2 (823)

OHE OHE
0=HL—IA “2A 2
2 Z/{Q + aa2 (6] + aul

AU, (82b)
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we may integrate across the wave starting from the nondegenerate point Uy
with

H’g = I/{l(z/{Q, —O!Q) — Z/[l (833)
) CAN OH'I\ ' oH'E
_ H'E - Auty - 2 2A b
0 ( 6212 > 2 Z/{z ( 81/12 ) 0042 @2 (83 )
oH'E\ ™
+ ( au2> AU,.
2

That is, we may use the formal machinery developed in section 2, with a
redefinition of the terms related to HZ corresponding to a reversed centering.

If ap = 0 then the derivatives 0H/0U and 0H /O« are trivial, and again there
is no problem. If |ay| is small, such that the multiple shooting iterations may
oscillate between shock and rarefaction solutions, then the reversed centering
(82) should be used consistently from iteration to iteration to preserve the

interpretation of oy (which is different for forward- and reverse-centerings on
the shock branch).

The analysis of a combined point of degeneracy and lack of genuine nonlinear-
ity follows the procedure described above. However, in this case the degeneracy
is not lifted by a first order perturbation (r - Dy;), but must be lifted by the
second order perturbation (r - Dy)?. The wave ordering in this case is not
given as indicated in Figure 3, but may be as indicated in Figure 4. As in the
simpler genuinely nonlinear case, backward centering of the solution (82) may
be used to compute the desired solution.

a) rarefactions
A3

b) shocks

Fig. 4. Wave labeling conventions upon lifting Ao, A3 degeneracy in state U; with
second-order perturbation dre, chosen to enforce canonical ordering.

If degeneracy occurs along a rarefaction wave curve, but not necessarily at the
end points, then reverse centering will not resolve the eigenvector ambiguity.
This circumstance occurred in the calculation shown in Figure 2. At each point
along the rarefaction wave curve, if degeneracy is detected then an appropriate
hybridization must be calculated.
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5.8 Degeneracy II: 0= Age1 = Aac2 < Aac3

This circumstance corresponds to a so-called “soft acoustic mode”: a thermo-
dynamic loss of shear strength encountered upon melting. When A,y = Ageo =
0, r3 and r5 become linearly degenerate and equal, and so do ry and r4: there
is a double eigenvector deficiency.

First we analyze the condition that this degeneracy exists in initial states Uy,
and Ug, and persists in all intermediate states. Then we have

J11 0 0

o = 0 011 0 (84&)
0 0 011
pc2 0 0

A=10 0 0 (84b)
0 0 0

and X,. =7 (54), Ay = diag(0, 0, ¢).

Without loss of generality we may at any point perform a “virtual remap” of
the underlying Lagrangian reference coordinate @. That is, set

g:==g (85)
and then
gu 0 0 1/911 0 0
g := 0 1 0 F = 0 1 0 (86)
0 0 1 0 0 1

with initially g;; = 1. Then in place of £(g, S) we construct the internal energy
function from £(gg, S). This mixed symbolic and numeric representation (86),
together with (84), expose the decoupling of variables pvs, pvs, gi2, and g3 in
the matrix A (58a). Thus, in the case of melting we have U = (pv1, pE, g11),
U € R, and

2u; 0 (=)
A=|E-2t o (pv1(c® — E) + vio11) g% , (87a)
w " 0
p
p(vi = ¢) 0 p(vi +c)
R=| (pE — o1 —pcvy) 1 (pE — o011 + pevy) |, (87b)
g11 0 g11
1 1 v1
~3c 0 o (1+%)
L=| -vu 1 [p(v}—E)+oul/gu |, (87c)
1 1 v1
to 0 ar (1-2)
A = diag(vy; — ¢, vy, vy +¢), (87d)
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and

P = (”l). (87¢)

011

These equations describe the Euler equations in conservation form, with P =
—o11 and pc? the bulk modulus Kg = OP/d1n p|s, with ¢ the bulk sound speed.
This system of dimension n = 3, m = 1, contains two genuinely nonlinear
waves and a single linearly degenerate contact discontinuity.

The more interesting problem arises when Uy, and Up are not initially degen-
erate, but that melting occurs for example across the 1 wave, so that states
Uy, Uy, and U; are molten. In this case, the treatment of the 1 wave and of
waves 4,5,6 follows the prescription of section 2. The 2 and 3 waves are lin-
early degenerate, and let us suppose initially that they could be treated in the
manner of a simple wave. The degenerate vectors 2 and 3 are

0
0
pvel X,omeq 0
ra= | p(B— ) el Xpemeq | =| 0 |, d=2,3 (88)
gXacTred 914
924
93d

since X,.m = I in this case. These vectors are constant, since in 1-directed
flow (n = 1) the variables ge; and ges are treated as parameters, constant on
each side of the contact. Thus,

Ud(Uo, Oéd) = U() “+ oqTg (89&)

DUOUd(U(), Ofd) = ] (89b)
0

—aad Ud(Uo, Oéd) = Tq (89C)

must apply across these degenerate waves if they were to be treated as genuine
waves. However a consequence of (89) and (62) is that columns 2 and 3 of the
matrix C' (19a) become

: (90)

and so C' must be singular. The hypothesis that we may solve this problem
as a 6-wave system is false. Instead, we must recognize that a phase change
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has occurred across the 1 wave, and so now the projection P acting across the
contacts (including waves 2 and 3) is

P:R =R, PU)= (91)

describing fluid-solid coupling [10].

6 Conclusions

A general iterative solution to the Riemann problem for systems of conserva-
tion laws is presented. Under conditions where Lax’s [6] existence and unique-
ness argument holds, our iterative method converges to this unique solution.
The structure of the method is quite simple although the thermodynamic
derivatives required may be complicated.

An analysis of the equations of hyperelastic solid mechanics reveals that the
key assumptions of genuine nonlinearity and distinct eigenvalues are not al-
ways valid. In fact, these pathological conditions occur under very common
conditions for equations of state with high symmetry. For these conditions, rel-
atively straightforward modifications are recommended to obtain the correct
entropy solution.

Using an elastically-isotropic hyperelastic model approximating copper, a com-
parison of exact and approximate Riemann solutions reveals some significant
discrepancies. In the examples of a predominately normal impact, with a small
component of shear, the approximate solver obtains reasonable results for the
hydrodynamic variables density p, normal velocity v,, and normal stress o;.
For the internal energy £ the approximate solver is in error by approximately
30%. Entropy S and the derived temperature are nonphysical in the approxi-
mate solution.

These results suggest that the approximate solver employed in [9,10] may be in-
adequate for certain computations. In particular, problems with temperature-
dependent rates of chemical reaction, or temperature- and rate-dependent
plasticity, may interact poorly with the approximate solver. Despite the sur-
prisingly discrepant results between the exact and approximate Riemann so-
lutions, numerical methods based on the approximate solver perform well and
do converge to the correct state values and wave speeds [9,10]. This occurs
because the approximate method is O(AUAA) ~ O(AU?) and so consistent,
and stable and consistent conservation-form methods converge to weak solu-
tions of the conservation laws [5].
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